A. B. Efimov and V. N. Vorob'ev

UDC 517.9

Using the Sommerfeld method we find the Green's function of a mixed boundary-value problem for the Laplace equation in a half-space with circular boundary conditions. A wide class of stationary problems in heat conduction, electrostatics, and elasticity theory reduce to the solution of this problem.

The method of constructing a Green's function of a mixed problem for the Laplace equation in a half-space was first given by Sommerfeld [1] for cases in which the boundary line of the boundary conditions is a straight line or two parallel lines. In this case Sommerfeld introduced a multisheeted Reimann space, whose branching line coincides with the boundary line of the boundary conditions. This approach is repeatedly used below in problems with a circular boundary line in connection with various applications [2-7]. We investigate such a boundary-value problem:

$$\Delta \varphi (x, y, z) = 0, \quad z \gg 0,
\varphi (x, y, z)|_{z=0} = f(x, y), \quad x^{2} + y^{2} < a^{2},
\frac{\partial \varphi (x, y, z)}{\partial z}\Big|_{z=0} = g(x, y), \quad x^{2} + y^{2} > a^{2}.$$
(1)

We consider a two-sheeted Reimann space with a circular branching line. Its Green's function for a Laplace equation has the form [2, 5, 7]

$$\omega(x, y, z, x_0, y_0, z_0) = \omega(\rho, \theta, \varphi, \rho_0, \theta_0, \varphi_0)$$

$$= \frac{1}{r} \left(\frac{1}{2} + \frac{1}{\pi} \arcsin \frac{\cos \frac{\theta - \theta_0}{2}}{\cosh \frac{\alpha}{2}} \right), \tag{2}$$

where we have introduced the toroidal coordinates:

$$\begin{cases} \theta = \frac{i}{2} \ln \frac{x^2 + y^2 + (z - ia)^2}{x^2 + y^2 + (z + ia)^2}, & x = \frac{a \sinh \rho}{\cosh \rho - \cos \theta} \cos \varphi, \\ \rho = \frac{1}{2} \ln \frac{(1/x^2 + y^2 + a)^2 + z^2}{(1/x^2 + y^2 - a)^2 + z^2}, & y = \frac{a \sinh \rho}{\cosh \rho - \cos \theta} \sin \varphi, \\ \varphi = \arctan \frac{y}{x}, & z = \frac{a \sin \theta}{\cosh \rho - \cos \theta}, \\ \cosh \alpha = \cosh \rho \cosh \rho_0 - \sinh \rho \sinh \rho_0 \cos (\varphi - \varphi_0), \\ r = \sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2}, \end{cases}$$

 $\omega(\rho, \theta, \varphi, \rho_0, \theta_0, \varphi_0)$ is a harmonic function, single-valued in a two-sheeted Reimann space, decreasing as 1/r, when the point (ρ, θ, φ) becomes infinite. As the points (ρ, θ, φ) and $(\rho_0, \theta_0, \varphi_0)$ approach each other, ω goes to infinity as 1/r. In the ordinary space x, y, z this function corresponds to a two-valued function, the values of which coincide with ω on the two sheets of the Reimann space.

We take the two functions $\omega_1 = \omega(\rho, \theta, \varphi, \rho_0, \theta_0, \varphi_0)$ and $\omega_2 = \omega(\rho, \theta, \varphi, \rho_0, \theta_0 + 2\pi, \varphi_0)$, singularities

All-Union Scientific-Research Institute of Physicotechnical and Radio Engineering Measurements, Computing Center, Academy of Sciences of the USSR, Moscow. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 26, No. 5, pp. 944-947, May, 1974. Original article submitted August 22, 1973.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

of which are found on the different sheets of the Reimann space, but are "projected" onto a single point of ordinary space. Their difference

$$u = \omega_1 - \omega_2 = \frac{2}{\pi r} \arcsin \frac{\cos \frac{\theta - \theta_0}{2}}{\cosh \frac{\alpha}{2}}$$
 (3)

is [2, 5-7] a Green's function of the boundary-value problem (1) in the case f(x, y) = 0, $g(x, y) \neq 0$. Actually, we can show that

$$\lim_{z \to 0} \frac{\partial u}{\partial z} \Big|_{z_0 = 0} = \delta(x - x_0) \, \delta(y - y_0), \quad x^2 + y^2 < a^2,$$

$$\lim_{z \to 0} u \, |_{z_0 = 0} = 0, \qquad x^2 + y^2 > a^2,$$

and the solution of the problem is given by the integral

$$\varphi(x, y, z) = \int_{S} u(x, y, z, x_0, y_0, 0) g(x_0, y_0) dx_0 dy_0,$$
 (4)

where S is the circle $x^2 + y^2 \le a^2$.

We turn to the case $f(x, y) \neq 0$, g(x, y) = 0. The Green's function of this problem is given by the equation

$$v(x, y, z, x_0, y_0) = \frac{\partial}{\partial z_0} u(x, y, z, x_0, y_0, z_0)|_{z_0 = 0}.$$
 (5)

It is constructed in [2] using this method, where, however, an inaccuracy is tolerated, since instead of u, we differentiate the following difference with respect to z_0 :

$$\omega$$
 (ρ , θ , φ , ρ_0 , θ_0 , φ_0) — ω (ρ , θ , φ , ρ_0 , — θ_0 , φ_0).

Subsequently we obtain the general solution in the form of an integrodifferential operator [6, 10, 11].

We calculate the Green's function v:

$$v = \frac{\partial u}{\partial z_0} \Big|_{z_0 = 0} = \frac{2}{\pi} \left\{ \frac{z}{r_0^3} \arcsin \frac{\sqrt{R - (x^2 + y^2 + z^2 - a^2) \cdot 1} \ a^2 - x_0^2 - y_0^2}{\sqrt{R(a^2 - x_0^2 - y_0^2) + (x^2 + y^2 + a^2)(x_0^2 + y_0^2 + a^2) - 4a^2(xx_0 + yy_0)}} + \frac{\sqrt{2} az}{r_0^2 \sqrt{(a^2 - x_0^2 - y_0^2) \left[R - (x^2 + y^2 + z^2 - a^2)\right]}} \right\},$$
(6)

where

$$r_0^2 = (x - x_0)^2 + (y - y_0)^2 + z^2$$
, $R = \sqrt{(x^2 + y^2 + z^2 - a^2)^2 + 4a^2z^2}$

We can verify that

$$\lim_{z \to 0} v = \delta(x - x_0) \, \delta(y - y_0), \qquad x^2 + y^2 < a^2,$$

$$\lim_{z \to 0} \frac{\partial v}{\partial x_0^2} = 0, \qquad x^2 + y^2 > a^2,$$

and the general solution of the problem has the form

$$\varphi(x, y, z) = \int_{S} v(x, y, z, x_{0}, y_{0}) f(x_{0}, y_{0}) dx_{0} dy_{0}.$$
 (7)

In applications we frequently must determine $\partial \varphi/\partial z$ on the surface z = 0. Differentiating v, we obtain the kernel K of the operator connection $\partial \varphi/\partial z$ with f(x, y) for small z:

$$K(x, y, z, x_0, y_0) = \frac{\partial v}{\partial z}$$

$$= \frac{2}{\pi} \left\{ \left(\frac{1}{r_0^3} - \frac{3z^2}{r_0^5} \right) \arcsin \frac{\sqrt{(a^2 - x^2 - y^2)(a^2 - x_0^2 - y_0^2)}}{\sqrt{[a^2 - (xx_0 + yy_0)]^2 + (xy_0 - yx_0)^2}} + \frac{a}{r_0^2 \sqrt{(a^2 - x^2 - y^2)(a^2 - x_0^2 - y_0^2)}} \right\} + O\left(\frac{z}{r_0^3}\right), \quad x^2 + y^2 < a^2.$$

$$(8)$$

For $z \to 0$ the kernel K has a singularity $1/r_0^3$, and the differentiated integral (7) diverges. We construct it by regularization in the usual way [8]

$$\int_{S} K(x, y, z, x_{0}, y_{0}) f(x_{0}, y_{0}) dx_{0} dy_{0}$$

$$= \int_{S} K(x, y, z, x_{0}, y_{0}) [f(x_{0}, y_{0}) - f(x, y)] dx_{0} dy_{0}$$

$$+ f(x, y) \int_{S} K(x, y, z, x_{0}, y_{0}) dx_{0} dy_{0}.$$
(9)

The last integral on the right side of (9) is the well known [6, 9] solution of the problem for f(x, y) = 1. Now, converting to the limit for $z \to 0$, we obtain the unknown operator for $\partial \varphi / \partial z$ on the surface of the half-space:

$$\frac{\partial \varphi}{\partial z}\Big|_{z=0} = f(x, y) \lim_{z \to 0} \int_{S} K(x, y, z, x_{0}, y_{0}) dx_{0}dy_{0}
+ \int_{S} K(x, y, 0, x_{0}, y_{0}) [f(x_{0}, y_{0}) - f(x, y)] dx_{0}dy_{0}
= \frac{f(x, y)}{\pi^{2} \sqrt{a^{2} - x^{2} - y^{2}}}
+ \frac{2}{\pi} \int_{S} \left[\frac{1}{r_{00}^{3}} \arcsin \frac{1}{1} \frac{(a^{2} - x^{2} - y^{2})(a^{2} - x_{0}^{2} - y_{0}^{2})}{1} \frac{1}{[a^{2} - (xx_{0} + yy_{0})]^{2} + (xy_{0} - yx_{0})^{2}} \right]
+ \frac{a}{r_{00}^{2} \sqrt{(a^{2} - x^{2} - y^{2})(a^{2} - x_{0}^{2} - y_{0}^{2})}}] [f(x_{0}, y_{0}) - f(x, y)] dx_{0}dy_{0}, \tag{10}$$

where $\mathbf{r}_{00}^2 = (\mathbf{x} - \mathbf{x}_0)^2 + (\mathbf{y} - \mathbf{y}_0)^2$,

For boundedness of the integral (10) inside the circle S it is sufficient that the second partial derivatives of f(x, y) be bounded.

NOTATION

 ω , u, v are the Green's functions;

δ is the Dirac delta function;

K is the kernel of the integral operator.

LITERATURE CITED

- 1. A. Sommerfeld, Proc. Lond. Math. Soc., 28 (1897).
- 2. E. W. Hobson, Cambridge Philisophical Trans., 18,(1900).
- 3. S. F. Neustadter, Multiple-Valued Harmonic Functions with Circle as Branch Curve, Univ. Calif. Publ. Math., N. S. (1951).
- 4. G. C. Evans, Lectures on Multiple-Valued Harmonic Functions in Space, Univ. Calif. Publ. Math., N. S. (1951).
- 5. N. E. Kochin, Collected Works, Vol. 2 [in Russian], Izd. Akad. Nauk SSSR, Moscow-Leningrad (1949).
- 6. L. A. Galin, Contact Problems in Elasticity Theory [in Russian], Gostekhizdat (1953).
- 7. M. D. Martynenko, Prikl. Mekhan., 6, No. 10 (1970).
- I. I. Gel'fand and G. E. Shilov, Generalized Functions and Operations on Them [in Russian], Fizmatgiz (1959).
- 9. N. S. Koshlyakov, E. B. Gliner, and M. M. Smirnov, Differential Equations of Mathematical Physics [in Russian], Fizmatgiz, Moscow (1962).
- 10. V. I. Mossakovskii, in: Scientific Notes of the Institute of Machine Science and Automation, Academy of Sciences of the Ukrainian SSR, Vol. 2, No. 1 [in Russian] (1953).
- 11. M. Ya. Leonov, PMM, 17, No. 1 (1953).