A MIXED BOUNDARY-VALUE PROBLEM FOR
THE LAPLACE EQUATION

A, B, Efimov and V. N, Vorob'ev UDC 517.9

Using the Sommerfeld method we find the Green's function of a mixed boundary-value pro-
blem for the Laplace equation in a half-space with circular boundary conditions. A wide
class of stationary problems in heat conduction, electrostatics, and elasticity theory reduce
to the solution of this problem. ’

The method of constructing a Green's function of a mixed problem for the Laplace equation in a half-
space was first given by Sommerfeld [1] for cases in which the boundary line of the boundary conditions is
a straight line or two parallel lines. In this case Sommerfeld introduced a multisheeted Reimann space,
whose branching line coincides with the boundary line of the boundary conditions. This approach is re-
peatedly used below in problems with a circular boundary line in connection withvarious applications [2-7].
We investigate such a boundary-value problem:
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We consider a two-sheeted Reimann space with a circular branching line. Its Green's function for a
Laplace equation has the form [2, 5, 7]
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where we have introduced the toroidal coordinates:
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wlp, 9, @, Py, 8y, ¢y is a harmonic function, single-valued in a two-sheeted Reimann space, decreasing
as 1/r, when the point (o, @, @) becomes infinite. As the points (o, 0, ¢) and (0,, 6,, @, approach each
other, w goes to infinity as 1/r. In the ordinary space x, y, z this function corresponds to a two-valued
function, the values of which coincide with w on the two sheets of the Reimann space.

We take the two functions w = wlp, 6, @, py, 0y, @) and w, = wlp, 6, @, p,y, 0y + 21, @), singularities
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of which are found on the different sheets of the Reimann space, but are "projected" onto a single point of
ordinary space. Their difference
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is [2, 5-7] a Green's function of the boundary-value problem (1) in the case f(x, y) = 0, g{x, y) 0. Actu-
ally, we can show that A
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and the solution of the problem is given by the integral
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where S is the circle x* +y* = a%,

We turn to the case f(x, y) # 0, g(x, y) =0. The Green's function of this problem is given by the equa-

tion

a N
v (xr Ys 2, X !/o) == ’(g u(x’ Y, 2, XsYo, 20) izo=0 . (5)
0

It is constructed in [2] using this method, where, however, an inaccuracy is tolerated, since instead of u,
we differentiate the following difference with respect to 2,:
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Subsequently we obtain the general solution in the form of an integrodifferential operator [6, 10, 11].

We calculate the Green's function v:
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We can verify that
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and the general solution of the problem has the form
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In applications we frequently must determine 5¢/02 on the surface z = 0, Differentiating v, we ob-
tain the kernel K of the operator connection 8p/6z with f(x, y) for small z:
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For z — 0 the kernel K has a singularity 1/1%, and the differentiated integral (7) diverges. We construct
it by regularization in the usual way [8]
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The last integral on the right side of (9) is the well known [6, 9] solution of the problem for f(x, y) = 1.
Now, converting to the limit for z — 0, we obtain the unknown operator for 8¢/0z on the surface of the half-
space:
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For boundedness of the integral (10) inside the circle S it is sufficient that the second partial deriva-
tives of f(x, y) be bounded.

NOTATICN
w, u, v  are the Green's functions;
é is the Dirac delta function;
" K is the kernel of the integral operator.
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